Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
《空间统计》发表关于空间和时空统计的理论和应用的文章。它喜欢手稿,目前的理论产生的新应用,或其中新的理论是应用于一个重要的实际情况。纯粹的理论研究很少会被接受。不接受未经方法学发展的纯案例研究的出版。空间统计涉及空间和时空数据的定量分析,包括其统计依赖性、准确性和不确定性。空间统计的方法学通常见于概率论、随机建模和数理统计以及信息科学。空间统计用于制图、评估空间数据质量、抽样设计优化、依赖结构建模以及从有限的时空数据集进行有效推断。
Evaluation of empirical Bayesian kriging
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2019.100368
Bayesian modelling for spatially misaligned health and air pollution data through the INLA-SPDE approach
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2019.04.001
Stochastic investigation of long-term persistence in two-dimensional images of rocks
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2018.11.002
BWM-ARAS: A new hybrid MCDM method for Cu prospectivity mapping in the Abhar area, NW Iran
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2019.100382
Bayesian analysis of areal data with unknown adjacencies using the stochastic edge mixed effects model
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2019.100357
Isotropy, symmetry, separability and strict positive definiteness for covariance functions: A critical review
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2018.09.003
Handling missing data in self-exciting point process models
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2018.12.004
ELSA: Entropy-based local indicator of spatial association
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2018.10.001
Social Network Spatial Model.
来源期刊:Spatial statisticsDOI:10.1016/J.SPASTA.2018.11.001
A multivariate nonparametric scan statistic for spatial data
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2018.10.002
Functional SAR models: With application to spatial econometrics
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2018.12.002
Analysis of variance for spatially correlated functional data: Application to brain data
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2019.100381
A Bayesian multivariate functional model with spatially varying coefficient approach for modeling hurricane track data
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2018.12.006
A spatially varying change points model for monitoring glaucoma progression using visual field data.
来源期刊:Spatial statisticsDOI:10.1016/j.spasta.2019.02.001
Leverage and influence diagnostics for Gibbs spatial point processes
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2018.09.004
Using a spatial point process framework to characterize lung computed tomography scans.
来源期刊:Spatial statisticsDOI:10.1016/J.SPASTA.2018.12.003
Velocities for spatio-temporal point patterns
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2018.12.007
GMM estimation of partially linear single-index spatial autoregressive model
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2019.04.002
Some observations on a recently proposed cross-correlation model
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2019.03.003
Global multivariate point pattern models for rain type occurrence.
来源期刊:Spatial statisticsDOI:10.1016/J.SPASTA.2019.04.003
Design-based estimation of mark variograms in forest ecosystem surveys
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2019.02.002
Exploring geometric anisotropy for point-referenced spatial data
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2019.100370
A new centered spatio-temporal autologistic regression model with an application to local spread of plant diseases
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2019.100361
A diagonally weighted matrix norm between two covariance matrices
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2019.01.001
Parametric spatial covariance models in the ensemble Kalman filter
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2018.12.005
Simulation of decorrelated factors in presence of secondary data
来源期刊:spatial statisticsDOI:10.1016/j.spasta.2019.100385
On the correlation structure between point patterns and linear networks
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2018.12.001
A variational method for parameter estimation in a logistic spatial regression
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2019.100365
Multivariate control charts to monitor the monthly frequency of vehicle robberies in São Paulo city
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2018.09.002
Efficient Bayesian modeling of large lattice data using spectral properties of Laplacian matrix
来源期刊:spatial statisticsDOI:10.1016/J.SPASTA.2019.01.003