Memes have been defined as basic units of transferrable information that reside in the brain and are propagated across populations through the process of imitation. From an algorithmic point of view, memes have come to be regarded as building-blocks of prior knowledge, expressed in arbitrary computational representations (e.g., local search heuristics, fuzzy rules, neural models, etc.), that have been acquired through experience by a human or machine, and can be imitated (i.e., reused) across problems.The Memetic Computing journal welcomes papers incorporating the aforementioned socio-cultural notion of memes into artificial systems, with particular emphasis on enhancing the efficacy of computational and artificial intelligence techniques for search, optimization, and machine learning through explicit prior knowledge incorporation. The goal of the journal is to thus be an outlet for high quality theoretical and applied research on hybrid, knowledge-driven computational approaches that may be characterized under any of the following categories of memetics:Type 1: General-purpose algorithms integrated with human-crafted heuristics that capture some form of prior domain knowledge; e.g., traditional memetic algorithms hybridizing evolutionary global search with a problem-specific local search.Type 2: Algorithms with the ability to automatically select, adapt, and reuse the most appropriate heuristics from a diverse pool of available choices; e.g., learning a mapping between global search operators and multiple local search schemes, given an optimization problem at hand.Type 3: Algorithms that autonomously learn with experience, adaptively reusing data and/or machine learning models drawn from related problems as prior knowledge in new target tasks of interest; examples include, but are not limited to, transfer learning and optimization, multi-task learning and optimization, or any other multi-X evolutionary learning and optimization methodologies.
模因被定义为存在于大脑中的可传递信息的基本单位,并通过模仿的过程在人群中传播。从算法的观点来看,迷因已经被认为是先验知识的构建块,以任意的计算表示(例如,局部搜索试探法、模糊规则、神经模型等),其已经由人或机器通过经验获得,并且可以被模仿(即,《模因计算》杂志欢迎将上述模因的社会文化概念纳入人工系统的论文,特别强调通过明确的先验知识整合来提高计算和人工智能技术在搜索、优化和机器学习方面的效率。该杂志的目标是成为一个高质量的理论和应用研究的出口,混合,知识驱动的计算方法,可以在以下任何一个模因论类别的特点:类型1:通用算法与人工启发式算法相结合,捕捉某种形式的先验领域知识;例如,可以是,传统的模因算法混合了进化全局搜索和特定问题局部搜索。类型2:算法能够自动选择,适应,和重用最合适的启发式从一个不同的池可用的选择;例如,可以是,-学习全局搜索算子和多个局部搜索方案之间的映射,给定当前的优化问题。根据经验自主学习的算法,自适应地重新使用从相关问题中提取的数据和/或机器学习模型作为感兴趣的新目标任务中的先验知识;示例包括但不限于迁移学习和优化、多任务学习和优化、或任何其他多X进化学习和优化方法。
The discovery of population interaction with a power law distribution in brain storm optimization
来源期刊:Memetic ComputingDOI:10.1007/s12293-017-0248-z
A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection
来源期刊:Memetic ComputingDOI:10.1007/S12293-018-0269-2
Improved bidirectional extreme learning machine based on enhanced random search
来源期刊:Memetic ComputingDOI:10.1007/S12293-017-0238-1
Optimizing ontology alignment through hybrid population-based incremental learning algorithm
来源期刊:Memetic ComputingDOI:10.1007/S12293-018-0255-8
An improved weighted extreme learning machine for imbalanced data classification
来源期刊:Memetic ComputingDOI:10.1007/S12293-017-0236-3
An improved differential evolution algorithm for solving a distributed assembly flexible job shop scheduling problem
来源期刊:Memetic ComputingDOI:10.1007/S12293-018-00278-7
Evolving multidimensional transformations for symbolic regression with M3GP
来源期刊:Memetic ComputingDOI:10.1007/S12293-018-0274-5
Class-specific cost-sensitive boosting weighted ELM for class imbalance learning
来源期刊:Memetic ComputingDOI:10.1007/S12293-018-0267-4
Mathematical modeling and a discrete artificial bee colony algorithm for the welding shop scheduling problem
来源期刊:Memetic ComputingDOI:10.1007/S12293-019-00283-4
Project portfolio selection and scheduling under a fuzzy environment
来源期刊:Memetic ComputingDOI:10.1007/S12293-019-00282-5
An intelligent scheduling algorithm for complex manufacturing system simulation with frequent synchronizations in a cloud environment
来源期刊:Memetic ComputingDOI:10.1007/S12293-019-00284-3
Compressed representation for higher-level meme space evolution: a case study on big knapsack problems
来源期刊:Memetic ComputingDOI:10.1007/s12293-017-0244-3
Baldwin effect and Lamarckian evolution in a memetic algorithm for Euclidean Steiner tree problem
来源期刊:Memetic ComputingDOI:10.1007/s12293-018-0256-7
Elastic parameter inversion problem based on brain storm optimization algorithm
来源期刊:Memetic ComputingDOI:10.1007/S12293-018-0259-4
OMNIREP: originating meaning by coevolving encodings and representations
来源期刊:Memetic ComputingDOI:10.1007/S12293-019-00285-2
A multi-level knee point based multi-objective evolutionary algorithm for AUC maximization
来源期刊:Memetic ComputingDOI:10.1007/S12293-019-00280-7
A fast two-objective differential evolution for the two-objective coverage problem of WSNs
来源期刊:Memetic ComputingDOI:10.1007/s12293-018-0264-7
Birds foraging search: a novel population-based algorithm for global optimization
来源期刊:Memetic ComputingDOI:10.1007/S12293-019-00286-1
Novel paralleled extreme learning machine networks for fault diagnosis of wind turbine drivetrain
来源期刊:Memetic ComputingDOI:10.1007/S12293-018-0277-2
A unified distributed ELM framework with supervised, semi-supervised and unsupervised big data learning
来源期刊:Memetic ComputingDOI:10.1007/S12293-018-0271-8
An improved differential evolution algorithm for optimization including linear equality constraints
来源期刊:Memetic ComputingDOI:10.1007/S12293-018-0268-3
A discrete bio-inspired metaheuristic algorithm for efficient and accurate image matting
来源期刊:Memetic ComputingDOI:10.1007/s12293-018-0275-4
On the choice of neighborhood sampling to build effective search operators for constrained MOPs
来源期刊:Memetic ComputingDOI:10.1007/S12293-018-0273-6
A novel location-based DNA matching algorithm for hyperspectral image classification
来源期刊:Memetic ComputingDOI:10.1007/S12293-018-0257-6
A performance bound of the multi-output extreme learning machine classifier
来源期刊:Memetic ComputingDOI:10.1007/S12293-018-0270-9