Fractional Calculus and Applied Analysis

Fractional Calculus and Applied Analysis

FRACT CALC APPL ANAL
影响因子:2.9
是否综述期刊:
是否预警:不在预警名单内
是否OA:
出版国家/地区:BULGARIA
出版社:Versita
发刊时间:2011
发刊频率:
收录数据库:SCIE/Scopus收录
ISSN:1311-0454

期刊介绍

Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
分数微积分和应用分析(FCAA,在世界数据库中缩写为分数。计算应用分析或FRACT CALC APPL ANAL)是一本专门介绍数学分析(微积分)中微分和积分可以是任意非整数阶的重要分支的理论和应用的国际期刊。其内容的高标准是由杰出的编辑委员会成员和邀请的外部评审员的专业知识保证的,并由最近获得的高影响因子(JIF)和影响范围(SJR)值证明,使该杂志在汤森路透社和Scopus的排行榜上名列前茅。
年发文量 128
国人发稿量 47.22
国人发文占比 0.37%
自引率 -
平均录取率-
平均审稿周期 -
版面费 US$3490
偏重研究方向 MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
期刊官网 https://www.springer.com/journal/13540
投稿链接 http://www.springer.com/mathematics/analysis/journal/13540

期刊高被引文献

A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0003
Space-time fractional stochastic partial differential equations with Lévy noise
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2020-0009
Fractional impulsive differential equations: Exact solutions, integral equations and short memory case
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0012
Fractional calculus in economic growth modelling of the group of seven
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0009
The failure of certain fractional calculus operators in two physical models
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0017
Some further results of the laplace transform for variable–order fractional difference equations
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0084
The flaw in the conformable calculus: It is conformable because it is not fractional
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0016
On Riesz derivative
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0019
The probabilistic point of view on the generalized fractional partial differential equations
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/FCA-2019-0033
Time-changed fractional Ornstein-Uhlenbeck process
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2020-0022
Discovering a universal variable-order fractional model for turbulent Couette flow using a physics-informed neural network
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0086
A time-space Hausdorff derivative model for anomalous transport in porous media
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0079
Perfect control for right-invertible Grünwald-Letnikov plants – an innovative approach to practical implementation
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0026
Porous functions
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0078
Supercritical fractional Kirchhoff type problems
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0071
Homogeneous robin boundary conditions and discrete spectrum of fractional eigenvalue problem
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0005
Method of upper and lower solutions for nonlinear Caputo fractional difference equations and its applications
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0069
Lagrangian solver for vector fractional diffusion in bounded anisotropic aquifers: Development and application
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0083
State-of-art survey of fractional order modeling and estimation methods for lithium-ion batteries
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0076
Well-posedness of the fractional Zener wave equation for heterogeneous viscoelastic materials
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2020-0005
Fractional-order modelling and parameter identification of electrical coils
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0013
Optimal control of linear systems of arbitrary fractional order
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0011
A CAD-based algorithm for solving stable parameter region of fractional-order systems with structured perturbations
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0030
On the harmonic extension approach to fractional powers in Banach spaces
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2020-0055
A note on fractional powers of strongly positive operators and their applications
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0020
Existence of mild solution of a class of nonlocal fractional order differential equation with not instantaneous impulses
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0029
Relationship between controllability and observability of standard and fractional different orders discrete-time linear system
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0010
The numerical algorithms for discrete Mittag-Leffler functions approximation
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0006
On fractional differential inclusions with Nonlocal boundary conditions
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0027
An investigation on continuous time random walk model for bedload transport
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0077
Fractional-order value identification of the discrete integrator from a noised signal. part I
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0014
On fractional regularity of distributions of functions in Gaussian random variables
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0066
Semilinear fractional elliptic problems with mixed Dirichlet-Neumann boundary conditions
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2020-0061
Numerical solution of fractional-order ordinary differential equations using the reformulated infinite state representation
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0070
Analysis of fractional order error models in adaptive systems: Mixed order cases
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0058
Compactness criteria for fractional integral operators
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0067
Weyl integrals on weighted spaces
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0065
Embeddings of weighted generalized Morrey spaces into Lebesgue spaces on fractal sets
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0064
From power laws to fractional diffusion processes with and without external forces, the non direct way
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0004
Linear stationary fractional differential equations
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0025
Dispersion analysis for wave equations with fractional Laplacian loss operators
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0082
High-order algorithms for riesz derivative and their applications (IV)
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0080
A survey on fractional asymptotic expansion method: A forgotten theory
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0062
Tempered relaxation equation and related generalized stable processes
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2020-0063
Controllability of nonlinear stochastic fractional higher order dynamical systems
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0056
A modified time-fractional diffusion equation and its finite difference method: Regularity and error analysis
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0054
Estimates of damped fractional wave equations
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0053
Algebraic fractional order differentiator based on the pseudo-state space representation
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0073
Asymptotics of fundamental solutions for time fractional equations with convolution kernels
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2020-0059
Existence of solutions for nonlinear fractional order p-Laplacian differential equations via critical point theory
来源期刊:Fractional Calculus and Applied AnalysisDOI:10.1515/fca-2019-0051

质量指标占比

研究类文章占比 OA被引用占比 撤稿占比 出版后修正文章占比
96.09%22.47%-1.43%

相关指数

影响因子
影响因子
年发文量
自引率
Cite Score

预警情况

查看说明
时间 预警情况
2025年03月发布的2025版不在预警名单中
2024年02月发布的2024版不在预警名单中
2023年01月发布的2023版不在预警名单中
2021年12月发布的2021版不在预警名单中
2020年12月发布的2020版不在预警名单中
*来源:中科院《 国际期刊预警名单》

JCR分区

WOS分区等级:Q1区
版本 按学科 分区
WOS期刊SCI分区
WOS期刊SCI分区
WOS期刊SCI分区是指SCI官方(Web of Science)为每个学科内的期刊按照IF数值排 序,将期刊按照四等分的方法划分的Q1-Q4等级,Q1代表质量最高,即常说的1区期刊。
(2024-2025年最新版)
MATHEMATICS
Q1

中科院分区

查看说明
版本 大类学科 小类学科 Top期刊 综述期刊
2025年3月最新升级版
数学3区
MATHEMATICS 数学
3区
MATHEMATICS, APPLIED 应用数学
3区
MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 数学跨学科应用
3区
2023年12月升级版
数学2区
MATHEMATICS 数学
2区
MATHEMATICS, APPLIED 应用数学
2区
MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 数学跨学科应用
2区
2022年12月旧的升级版
数学3区
MATHEMATICS 数学
3区
MATHEMATICS, APPLIED 应用数学
3区
MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 数学跨学科应用
3区