Advances in Data Analysis and Classification

Advances in Data Analysis and Classification

ADV DATA ANAL CLASSI
影响因子:1.3
是否综述期刊:
是否预警:不在预警名单内
是否OA:
出版国家/地区:GERMANY
出版社:Springer Berlin Heidelberg
发刊时间:2007
发刊频率:4 issues per year
收录数据库:SCIE/Scopus收录
ISSN:1862-5347

期刊介绍

The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.
国际期刊《数据分析和分类进展》(ADAC)是一个高标准出版物的论坛,内容涉及从多种类型的数据中提取可知方面的研究和应用。它发表关于以下主题的文章:数据分析的结构、数量或统计方法;分类、聚类和模式识别方法的进展;用于对复杂数据建模和挖掘大数据集的策略;从数据中提取知识的方法以及先进方法在具体实践领域的应用。文章阐述了如何通过熟练地使用数据分析方法,从数据中获得新的特定领域知识。该杂志还发表概述和阐明特殊方法的基本思想和技术的调查论文。
年发文量 37
国人发稿量 3.44
国人发文占比 0.09%
自引率 -
平均录取率0
平均审稿周期 >12周,或约稿
版面费 US$2990
偏重研究方向 STATISTICS & PROBABILITY-
期刊官网 https://www.springer.com/11634
投稿链接 https://www.editorialmanager.com/adac/

期刊高被引文献

Greedy Gaussian segmentation of multivariate time series
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0335-0
A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0334-1
Variable selection in model-based clustering and discriminant analysis with a regularization approach
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0322-5
From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0329-y
Robust and sparse k-means clustering for high-dimensional data
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-019-00356-9
Directional co-clustering
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0323-4
Mixture model modal clustering
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0308-3
Studying crime trends in the USA over the years 2000–2012
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0326-1
Model-based approach for household clustering with mixed scale variables
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0313-6
Generalised linear model trees with global additive effects
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0342-1
Finite mixture of regression models for censored data based on scale mixtures of normal distributions
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0337-y
Weighted distance-based trees for ranking data
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-017-0306-X
Finite mixtures, projection pursuit and tensor rank: a triangulation
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0336-z
Robust clustering for functional data based on trimming and constraints
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0312-7
Clustering via finite nonparametric ICA mixture models
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0338-x
Comparisons among several methods for handling missing data in principal component analysis (PCA)
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0310-9
Mixtures of restricted skew-t factor analyzers with common factor loadings
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0317-2
From-below Boolean matrix factorization algorithm based on MDL
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-019-00383-6
Exploration of the variability of variable selection based on distances between bootstrap sample results
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-00351-6
Convex clustering for binary data
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0350-1
New distance measures for classifying X-ray astronomy data into stellar classes
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0309-2
A classification tree approach for the modeling of competing risks in discrete time
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0345-Y
A Kendall correlation coefficient between functional data
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-019-00360-Z
Bayesian shrinkage in mixture-of-experts models: identifying robust determinants of class membership
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-019-00353-Y
Assessing trimming methodologies for clustering linear regression data
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0331-4
Linear components of quadratic classifiers
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0321-6
Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-019-00361-Y
Regression trees for detecting preference patterns from rank data
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0332-3
Variable selection in discriminant analysis for mixed continuous-binary variables and several groups
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0343-0
Unifying data units and models in (co-)clustering
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0325-2
Supervised learning via smoothed Polya trees
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0344-Z
A method for selecting the relevant dimensions for high-dimensional classification in singular vector spaces
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0311-8
On support vector machines under a multiple-cost scenario
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0330-5
A bivariate index vector for measuring departure from double symmetry in square contingency tables
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0320-7
Investigating consumers’ store-choice behavior via hierarchical variable selection
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0327-0
Clustering space-time series: FSTAR as a flexible STAR approach
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0314-5
Orthogonal nonnegative matrix tri-factorization based on Tweedie distributions
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0348-8
Subspace clustering for the finite mixture of generalized hyperbolic distributions
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0333-2
Discriminant analysis for discrete variables derived from a tree-structured graphical model
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-019-00352-Z
Properties of Bangdiwala’s B
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/S11634-018-0319-0
sARI: a soft agreement measure for class partitions incorporating assignment probabilities
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0346-x
Random effects clustering in multilevel modeling: choosing a proper partition
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0347-9
Finite mixture biclustering of discrete type multivariate data
来源期刊:Advances in Data Analysis and ClassificationDOI:10.1007/s11634-018-0324-3

质量指标占比

研究类文章占比 OA被引用占比 撤稿占比 出版后修正文章占比
100.00%43.9%--

相关指数

影响因子
影响因子
年发文量
自引率
Cite Score

预警情况

查看说明
时间 预警情况
2025年03月发布的2025版不在预警名单中
2024年02月发布的2024版不在预警名单中
2023年01月发布的2023版不在预警名单中
2021年12月发布的2021版不在预警名单中
2020年12月发布的2020版不在预警名单中
*来源:中科院《 国际期刊预警名单》

JCR分区

WOS分区等级:Q2区
版本 按学科 分区
WOS期刊SCI分区
WOS期刊SCI分区
WOS期刊SCI分区是指SCI官方(Web of Science)为每个学科内的期刊按照IF数值排 序,将期刊按照四等分的方法划分的Q1-Q4等级,Q1代表质量最高,即常说的1区期刊。
(2024-2025年最新版)
STATISTICS & PROBABILITY
Q2

中科院分区

查看说明
版本 大类学科 小类学科 Top期刊 综述期刊
2025年3月最新升级版
计算机科学4区
STATISTICS & PROBABILITY 统计学与概率论
3区
2023年12月升级版
计算机科学4区
STATISTICS & PROBABILITY 统计学与概率论
4区
2022年12月旧的升级版
计算机科学3区
STATISTICS & PROBABILITY 统计学与概率论
3区