The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.
Bayes, Oracle Bayes and Empirical Bayes
来源期刊:Statistical ScienceDOI:10.1214/18-STS674
Statistical analysis of zero-inflated nonnegative continuous data: A review
来源期刊:Statistical ScienceDOI:10.1214/18-STS681
Comment: Minimalist $g$-Modeling
来源期刊:Statistical ScienceDOI:10.1214/19-STS706
Comment: Spherical Cows in a Vacuum: Data Analysis Competitions for Causal Inference
来源期刊:Statistical ScienceDOI:10.1214/18-STS684
Comment: Strengthening Empirical Evaluation of Causal Inference Methods
来源期刊:Statistical ScienceDOI:10.1214/18-STS690
Comment: Will Competition-Winning Methods for Causal Inference Also Succeed in Practice?
来源期刊:Statistical ScienceDOI:10.1214/18-STS680
Comment: Unreasonable Effectiveness of Monte Carlo
来源期刊:Statistical ScienceDOI:10.1214/18-STS676
Rejoinder: On nearly assumption-free tests of nominal confidence interval coverage for causal parameters estimated by machine learning
来源期刊:Statistical ScienceDOI:10.1214/20-sts786
Models as Approximations—Rejoinder
来源期刊:Statistical ScienceDOI:10.1214/19-sts762
Larry Brown’s Work on Admissibility
来源期刊:Statistical ScienceDOI:10.1214/19-sts744
Gaussianization Machines for Non-Gaussian Function Estimation Models
来源期刊:Statistical ScienceDOI:10.1214/19-sts718
Producing Official County-Level Agricultural Estimates in the United States: Needs and Challenges
来源期刊:Statistical ScienceDOI:10.1214/18-STS687
Comment on “Automated Versus Do-It-Yourself Methods for Causal Inference: Lessons Learned from a Data Analysis Competition”
来源期刊:Statistical ScienceDOI:10.1214/18-STS689
Comment: Empirical Bayes Interval Estimation
来源期刊:Statistical ScienceDOI:10.1214/19-STS708
Comment: Variational Autoencoders as Empirical Bayes
来源期刊:Statistical ScienceDOI:10.1214/19-STS710
Comment: Statistical Inference from a Predictive Perspective
来源期刊:Statistical ScienceDOI:10.1214/19-sts748
Gaussian integrals and Rice series in crossing distributions : to compute the distribution of maxima and other features of Gaussian processes
来源期刊:Statistical ScienceDOI:10.1214/18-STS662
A Conversation with Piet Groeneboom
来源期刊:Statistical ScienceDOI:10.1214/18-STS663
A Conversation with Robert E. Kass
来源期刊:Statistical ScienceDOI:10.1214/18-STS691
A Conversation with Noel Cressie
来源期刊:Statistical ScienceDOI:10.1214/19-STS695
Larry Brown’s Contributions to Parametric Inference, Decision Theory and Foundations: A Survey
来源期刊:Statistical ScienceDOI:10.1214/19-sts717
Comment: Models Are Approximations!
来源期刊:Statistical ScienceDOI:10.1214/19-sts746
A Conversation with Peter Diggle
来源期刊:Statistical ScienceDOI:10.1214/19-sts703
Statistical Theory Powering Data Science
来源期刊:Statistical ScienceDOI:10.1214/19-sts754
A Kernel Regression Procedure in the 3D Shape Space with an Application to Online Sales of Children’s Wear
来源期刊:Statistical ScienceDOI:10.1214/18-STS675
Rejoinder: Response to Discussions and a Look Ahead
来源期刊:Statistical ScienceDOI:10.1214/18-STS688
Comment: Causal Inference Competitions: Where Should We Aim?
来源期刊:Statistical ScienceDOI:10.1214/18-STS679
Discussion of Models as Approximations I & II
来源期刊:Statistical ScienceDOI:10.1214/19-sts722
A Conversation with Dick Dudley
来源期刊:Statistical ScienceDOI:10.1214/18-STS678
Comment on Models as Approximations, Parts I and II, by Buja et al.
来源期刊:Statistical ScienceDOI:10.1214/19-sts723
Comment: Contributions of Model Features to BART Causal Inference Performance Using ACIC 2016 Competition Data
来源期刊:Statistical ScienceDOI:10.1214/18-STS682