Metabolic Engineering (MBE) is devoted to the publication of original research papers on the directed modulation of metabolic pathways for metabolite over production or the improvement of cellular properties. Papers describing native pathway engineering and synthesis of heterologous pathways for converting microorganisms into microbial cell factories are also welcome.
代谢工程(Metabolic Engineering, MBE )致力于发表有关定向调控代谢途径以实现代谢产物过量产生或改善细胞特性的原创性研究论文。描述天然途径工程和异源途径合成的论文,用于将微生物转化为微生物细胞工厂,也是受欢迎的。
Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.03.009
Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2018.09.009
Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2018.11.004
Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2018.10.006
Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.08.008
Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.01.005
Validating genome-wide CRISPR-Cas9 function improves screening in the oleaginous yeast Yarrowia lipolytica.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.06.007
Engineering the morphology and metabolism of pH tolerant Ustilago cynodontis for efficient itaconic acid production.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.05.004
Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2018.11.008
Exceptional solvent tolerance in Yarrowia lipolytica is enhanced by sterols.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.03.003
Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: A new tool for engineering ketocarotenoids
来源期刊:Metabolic EngineeringDOI:10.1016/j.ymben.2018.12.006
Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2018.11.006
Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.08.013
Metabolic flux responses to deletion of 20 core enzymes reveal flexibility and limits of E. coli metabolism.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.08.003
Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV).
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.03.006
Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2018.10.003
Cyanobacterial carboxysome mutant analysis reveals the influence of enzyme compartmentalization on cellular metabolism and metabolic network rigidity.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.04.010
Genome-scale evaluation of core one-carbon metabolism in gammaproteobacterial methanotrophs grown on methane and methanol.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.10.004
Engineering Lactococcus lactis for the production of unusual anthocyanins using tea as substrate.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.04.002
Metabolic engineering of the type I methanotroph Methylomonas sp. DH-1 for production of succinate from methane.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.03.013
Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2018.11.010
De novo production of benzyl glucosinolate in Escherichia coli.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.02.004
Transomics data-driven, ensemble kinetic modeling for system-level understanding and engineering of the cyanobacteria central metabolism.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.01.004
Construction of artificial micro-aerobic metabolism for energy- and carbon-efficient synthesis of medium chain fatty acids in Escherichia coli.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.01.006
Manipulation of polyhydroxyalkanoate granular sizes in Halomonas bluephagenesis.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.03.011
Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.07.003
Direct production of commodity chemicals from lignocellulose using Myceliophthora thermophila.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.05.007
Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.08.012
Multi-level engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the production of C9 chemicals from oleic acid.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.03.012
A CRISPR/Cas9-based genome editing system for Rhodococcus ruber TH.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.10.003
Upgrade of wood sugar d-xylose to a value-added nutraceutical by in vitro metabolic engineering.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2018.10.007
Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.10.006
Engineering the early secretory pathway for increased protein secretion in Saccharomyces cerevisiae.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.06.010
Combining retinal-based and chlorophyll-based (oxygenic) photosynthesis: Proteorhodopsin expression increases growth rate and fitness of a ∆PSI strain of Synechocystis sp. PCC6803.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2018.11.002
Expanded synthetic small regulatory RNA expression platforms for rapid and multiplex gene expression knockdown.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.04.003
Stimulus response-based fine-tuning of polyhydroxyalkanoate pathway in Halomonas.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.10.007
Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.07.008
Subcellular engineering of lipase dependent pathways directed towards lipid related organelles for highly effectively compartmentalized biosynthesis of triacylglycerol derived products in Yarrowia lipolytica.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.08.001
Pan-cancer analysis of the metabolic reaction network.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.09.006
Kick-starting evolution efficiency with an autonomous evolution mutation system.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.03.010
Production optimization and biosynthesis revision of corallopyronin A, a potent anti-filarial antibiotic.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.07.010
Combining isotopically non-stationary metabolic flux analysis with proteomics to unravel the regulation of the Calvin-Benson-Bassham cycle in Synechocystis sp. PCC 6803.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.08.014
Purity by design: Reducing impurities in bioproduction by stimulus-controlled global translational downregulation of non-product proteins.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2018.11.007
High level production of flavonoid rhamnosides by metagenome-derived Glycosyltransferase C in Escherichia coli utilizing dextrins of starch as a single carbon source.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.07.002
Design and engineering of E. coli metabolic sensor strains with a wide sensitivity range for glycerate.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.09.002
Improving recombinant bone morphogenetic protein-4 (BMP-4) production by autoregulatory feedback loop removal using BMP receptor-knockout CHO cell lines.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2018.11.003
Metabolic engineering of Escherichia coli to produce a monophosphoryl lipid A adjuvant.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.11.009
Functional expression of a bacterial α-ketoglutarate dehydrogenase in the cytosol of Saccharomyces cerevisiae.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.10.001
Production of nonnatural straight-chain amino acid 6-aminocaproate via an artificial iterative carbon-chain-extension cycle.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2019.06.009
Mapping Salmonella typhimurium pathways using 13C metabolic flux analysis.
来源期刊:Metabolic engineeringDOI:10.1016/j.ymben.2018.11.011