Research in the Mathematical Sciences is an international, peer-reviewed hybrid journal covering the full scope of Theoretical Mathematics, Applied Mathematics, and Theoretical Computer Science. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to the research areas of both theoretical and applied mathematics and theoretical computer science. This journal is an efficient enterprise where the editors play a central role in soliciting the best research papers, and where editorial decisions are reached in a timely fashion. Research in the Mathematical Sciences does not have a length restriction and encourages the submission of longer articles in which more complex and detailed analysis and proofing of theorems is required. It also publishes shorter research communications (Letters) covering nascent research in some of the hottest areas of mathematical research. This journal will publish the highest quality papers in all of the traditional areas of applied and theoretical areas of mathematics and computer science, and it will actively seek to publish seminal papers in the most emerging and interdisciplinary areas in all of the mathematical sciences. Research in the Mathematical Sciences wishes to lead the way by promoting the highest quality research of this type.
《数学科学研究》是一本国际性的、同行评审的混合期刊,涵盖理论数学、应用数学和理论计算机科学的全部范围。该杂志的使命是发表高质量的原创文章,对理论和应用数学以及理论计算机科学的研究领域做出重大贡献。这本期刊是一个高效的企业,编辑在征集最好的研究论文方面发挥着核心作用,并及时做出编辑决定。数学科学研究没有篇幅限制,鼓励提交较长的文章,其中需要更复杂和详细的分析和定理证明。它还出版较短的研究通讯(信件),涵盖一些最热门的数学研究领域的新生研究。该杂志将发表数学和计算机科学的所有传统应用和理论领域的最高质量的论文,并将积极寻求发表所有数学科学中最新兴和跨学科领域的开创性论文。数学科学研究希望通过促进这种类型的最高质量的研究来引领潮流。
年发文量 68
国人发稿量 7.39
国人发文占比 0.11%
自引率 -
平均录取率-
平均审稿周期 -
版面费 US$3390
偏重研究方向 Mathematics-Computational Mathematics
期刊官网 https://www.springer.com/journal/40687
投稿链接 https://www.editorialmanager.com/RMSS
Overcoming the curse of dimensionality for some Hamilton–Jacobi partial differential equations via neural network architectures
来源期刊:Research in the Mathematical SciencesDOI:10.1007/s40687-020-00215-6
Modeling of missing dynamical systems: deriving parametric models using a nonparametric framework
来源期刊:Research in the Mathematical SciencesDOI:10.1007/s40687-020-00217-4
Higher depth quantum modular forms, multiple Eichler integrals, and $$\\mathfrak {sl}_3$$sl3 false theta functions
来源期刊:Research in the Mathematical SciencesDOI:10.1007/s40687-019-0182-4
Multivariable Appell functions and nonholomorphic Jacobi forms
来源期刊:Research in the Mathematical SciencesDOI:10.1007/S40687-019-0178-0
An error bound for the slender body approximation of a thin, rigid fiber sedimenting in Stokes flow
来源期刊:Research in the Mathematical SciencesDOI:10.1007/s40687-020-00206-7
Ampleness of Schur powers of cotangent bundles and k-hyperbolicity
来源期刊:Research in the Mathematical SciencesDOI:10.1007/s40687-020-00243-2
Analogue of a Fock-type integral arising from electromagnetism and its applications in number theory
来源期刊:Research in the Mathematical SciencesDOI:10.1007/s40687-020-00223-6
Randomized and fault-tolerant method of subspace corrections
来源期刊:Research in the Mathematical SciencesDOI:10.1007/S40687-019-0187-Z
Quantum Jacobi forms in number theory, topology, and mathematical physics
来源期刊:Research in the Mathematical SciencesDOI:10.1007/S40687-019-0188-Y
Period functions associated to real-analytic modular forms
来源期刊:Research in the Mathematical SciencesDOI:10.1007/s40687-020-00221-8
Analyticity of Steklov eigenvalues of nearly circular and nearly spherical domains
来源期刊:Research in the Mathematical SciencesDOI:10.1007/s40687-020-0202-4