Advances in Mathematics of Communications

Advances in Mathematics of Communications

ADV MATH COMMUN
影响因子:0.7
是否综述期刊:
是否预警:不在预警名单内
是否OA:
出版国家/地区:UNITED STATES
出版社:American Institute of Mathematical Sciences
发刊时间:0
发刊频率:Quarterly
收录数据库:SCIE/Scopus收录
ISSN:1930-5346

期刊介绍

Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected.Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome.More detailed indication of the journal's scope is given by the subject interests of the members of the board of editors.
《通信数学进展》(AMC)出版与通信技术应用相关的所有数学和计算机科学领域的最高质量原创研究论文。因此,邀请来自数学许多领域的投稿,前提是这些投稿显示出高度的原创性、新技术、创新方法、新颖方法,或其他高度的深度和复杂性。任何不符合这些标准的工作都将被拒绝。涵盖的领域包括编码理论,密码学,组合学,有限几何,代数和数论,但不限于这些。这本杂志也旨在涵盖这些学科的算法和计算方面。因此,欢迎所有数学和计算机科学的贡献,适当的深度和相关的上述应用通信技术。更详细的指示,该杂志的范围是由主题利益的编辑委员会成员。
年发文量 61
国人发稿量 18.21
国人发文占比 0.3%
自引率 -
平均录取率0
平均审稿周期 >12周,或约稿
版面费 -
偏重研究方向 工程技术-计算机:理论方法
期刊官网 http://aimsciences.org/journals/home.jsp?journalID=10
投稿链接 http://aimsciences.org/journals/home.jsp?journalID=10

期刊高被引文献

Constructing self-dual codes from group rings and reverse circulant matrices
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020077
An explicit representation and enumeration for negacyclic codes of length \\begin{document}$ 2^kn $\\end{document} over \\begin{document}$ \\mathbb{Z}_4+u\\mathbb{Z}_4 $\\end{document}
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020067
\\begin{document}$\\textsf{DWCDM+}$\\end{document} : A BBB secure nonce based MAC
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/AMC.2019042
A spectral characterisation of \\begin{document}$ t $\\end{document} -designs and its applications
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/AMC.2019030
Cyclic DNA codes over \\begin{document}$ \\mathbb{F}_2[u,v]/\\langle u^3, v^2-v, vu-uv\\rangle$\\end{document}
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/AMC.2019009
A new class of \\begin{document}$ p $\\end{document} -ary regular bent functions
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020042
\\begin{document}$ s $\\end{document} -PD-sets for codes from projective planes \\begin{document}$ \\mathrm{PG}(2,2^h) $\\end{document} , \\begin{document}$ 5 \\leq h\\leq 9 $\\end{document}
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020075
On finite length nonbinary sequences with large nonlinear complexity over the residue ring \\begin{document}$ \\mathbb{Z}_{m} $\\end{document}
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020091
The differential spectrum of a class of power functions over finite fields
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020080
A New Construction of odd-variable Rotation symmetric Boolean functions with good cryptographic properties
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020115
Further improvement of factoring \\begin{document}$ N = p^r q^s$\\end{document} with partial known bits
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2019007
A construction of \\begin{document}$ p $\\end{document} -ary linear codes with two or three weights
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020039
Several new classes of (balanced) Boolean functions with few Walsh transform values
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020095
Finding small solutions of the equation \\begin{document}$ \\mathit{{Bx-Ay = z}} $\\end{document} and its applications to cryptanalysis of the RSA cryptosystem
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020076
Binary codes from \\begin{document}$ m $\\end{document} -ary \\begin{document}$ n $\\end{document} -cubes \\begin{document}$ Q^m_n $\\end{document}
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020079
Repeated-root constacyclic codes of length \\begin{document}$ 6lp^s $\\end{document}
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020051
Some optimal cyclic $ \\mathbb{F}_q $-linear $ \\mathbb{F}_{q^t} $-codes
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020072
New optimal error-correcting codes for crosstalk avoidance in on-chip data buses
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020078
On Hadamard full propelinear codes with associated group \\begin{document}$ C_{2t}\\times C_2 $\\end{document}
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020041
Infinite families of \\begin{document}$ 3 $\\end{document} -designs from o-polynomials
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020082
Optimal subspace codes in $ {{\\rm{PG}}}(4, q) $
来源期刊:Adv. Math. Commun.DOI:10.3934/amc.2019025
Internal state recovery of Espresso stream cipher using conditional sampling resistance and TMDTO attack
来源期刊:Advances in Mathematics of CommunicationsDOI:10.3934/amc.2020081

质量指标占比

研究类文章占比 OA被引用占比 撤稿占比 出版后修正文章占比
100.00%83.69%--

相关指数

影响因子
影响因子
年发文量
自引率
Cite Score

预警情况

查看说明
时间 预警情况
2025年03月发布的2025版不在预警名单中
2024年02月发布的2024版不在预警名单中
2023年01月发布的2023版不在预警名单中
2021年12月发布的2021版不在预警名单中
2020年12月发布的2020版不在预警名单中
*来源:中科院《 国际期刊预警名单》

JCR分区

WOS分区等级:Q4区
版本 按学科 分区
WOS期刊SCI分区
WOS期刊SCI分区
WOS期刊SCI分区是指SCI官方(Web of Science)为每个学科内的期刊按照IF数值排 序,将期刊按照四等分的方法划分的Q1-Q4等级,Q1代表质量最高,即常说的1区期刊。
(2024-2025年最新版)
COMPUTER SCIENCE, THEORY & METHODS
Q4

中科院分区

查看说明
版本 大类学科 小类学科 Top期刊 综述期刊
2025年3月最新升级版
计算机科学4区
COMPUTER SCIENCE, THEORY & METHODS 计算机:理论方法
4区
MATHEMATICS, APPLIED 应用数学
4区
2023年12月升级版
计算机科学4区
COMPUTER SCIENCE, THEORY & METHODS 计算机:理论方法
4区
MATHEMATICS, APPLIED 应用数学
4区
2022年12月旧的升级版
计算机科学4区
COMPUTER SCIENCE, THEORY & METHODS 计算机:理论方法
4区
MATHEMATICS, APPLIED 应用数学
4区