FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY

FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY

FRACTALS
影响因子:2.9
是否综述期刊:
是否预警:不在预警名单内
是否OA:
出版国家/地区:SINGAPORE
出版社:World Scientific Publishing Co. Pte Ltd
发刊时间:1993
发刊频率:Quarterly
收录数据库:SCIE/Scopus收录
ISSN:0218-348X

期刊介绍

The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.
在过去的几十年里,对涉及复杂几何、模式和尺度的现象的研究经历了引人注目的发展和应用。在这段相对较短的时间内,几何和/或时间尺度已经被证明代表了许多过程的共同方面,这些过程发生在非常不同的领域范围内,包括物理学、数学、生物学、化学、经济学、工程技术和人类行为。通常,现象的复杂性表现在其背后错综复杂的几何结构中,在大多数情况下,可以用非整数(分形)维的对象来描述。在其他情况下,事件的时间分布或各种其他量表现出特定的标度行为,从而提供了对决定给定过程的相关因素的更好理解。使用分形几何和标度作为相关理论、数值和实验研究的语言,有可能对以前难以解决的问题有更深入的了解。除其他外,通过应用标度不变性、自亲和性和多重分形等概念,对生长现象、湍流、迭代函数、胶体聚集、生物模式形成、股票市场和非均质材料有了更好的理解。我们致力于将这些领域的最新进展汇集在一起,以便在自然界和社会中复杂的空间和时间行为的各种方法和科学观点之间产生富有成效的互动。
年发文量 255
国人发稿量 161.7
国人发文占比 0.63%
自引率 -
平均录取率0
平均审稿周期 >12周,或约稿
版面费 -
偏重研究方向 数学-数学跨学科应用
期刊官网 http://www.worldscientific.com/worldscinet/fractals
投稿链接 http://www.editorialmanager.com/fractals/login.asp

期刊高被引文献

A FRACTAL MODEL OF PERMEABILITY FOR THE LIQUID HELIUM FLOW IN CABLE-IN-CONDUIT CONDUCTORS
来源期刊:FractalsDOI:10.1142/S0218348X19500646
a New Spectral-Spatial Jointed Hyperspectral Image Classification Approach Based on Fractal Dimension Analysis
来源期刊:FractalsDOI:10.1142/S0218348X19500798
A NOVEL FRACTAL MODEL FOR RELATIVE PERMEABILITY OF GAS DIFFUSION LAYER IN PROTON EXCHANGE MEMBRANE FUEL CELL WITH CAPILLARY PRESSURE EFFECT
来源期刊:FractalsDOI:10.1142/S0218348X19500129
A NOVEL METHOD TO IDENTIFY THE SCALING REGION OF ROUGH SURFACE PROFILE
来源期刊:FractalsDOI:10.1142/S0218348X19500117
a Primal-Dual Algorithm for Robust Fractal Image Coding
来源期刊:FractalsDOI:10.1142/S0218348X19501196
DECODING OF WRIST MOVEMENTS’ DIRECTION BY FRACTAL ANALYSIS OF MAGNETOENCEPHALOGRAPHY (MEG) SIGNAL
来源期刊:FractalsDOI:10.1142/S0218348X19500014
Electroosmotic flow in treelike branching microchannel network
来源期刊:FractalsDOI:10.1142/S0218348X19500956
KOZENY–CARMAN CONSTANT FOR GAS FLOW THROUGH FIBROUS POROUS MEDIA BY FRACTAL-MONTE CARLO SIMULATIONS
来源期刊:FractalsDOI:10.1142/S0218348X19500622
COMPLEXITY-BASED ANALYSIS OF THE INFLUENCE OF VISUAL STIMULUS COLOR ON HUMAN EYE MOVEMENT
来源期刊:FractalsDOI:10.1142/S0218348X19500026
EXACT TRAVELING-WAVE SOLUTIONS FOR ONE-DIMENSIONAL MODIFIED KORTEWEG–DE VRIES EQUATION DEFINED ON CANTOR SETS
来源期刊:FractalsDOI:10.1142/S0218348X19400103
Fractal-Based Classification of Electromyography (emg) Signal Between Fingers and HAND’S Basic Movements, Functional Movements, and Force Patterns
来源期刊:FractalsDOI:10.1142/S0218348X19500506
COMPLEXITY-BASED ANALYSIS OF THE RELATION BETWEEN MOVING VISUAL STIMULI AND HUMAN EYE MOVEMENT
来源期刊:FractalsDOI:10.1142/S0218348X19500245
EIGENTIME IDENTITIES OF FRACTAL FLOWER NETWORKS
来源期刊:FractalsDOI:10.1142/S0218348X19500087
AUDIO MAGNETOTELLURIC SIGNAL-NOISE IDENTIFICATION AND SEPARATION BASED ON MULTIFRACTAL SPECTRUM AND MATCHING PURSUIT
来源期刊:FractalsDOI:10.1142/S0218348X19400073
DECODING OF THE RELATION BETWEEN FRACTAL STRUCTURE OF CUTTING FORCE AND SURFACE ROUGHNESS OF MACHINED WORKPIECE IN END MILLING OPERATION
来源期刊:FractalsDOI:10.1142/S0218348X19500543
FRACTAL-BASED ANALYSIS OF THE RELATION BETWEEN THE FRACTAL STRUCTURES OF MACHINED SURFACE AND TOOL WEAR IN TURNING OPERATION
来源期刊:FractalsDOI:10.1142/S0218348X19500944
Complexity-Based Decoding of the Effect of Machining Parameters on the Machined Surface in Milling Operation
来源期刊:FractalsDOI:10.1142/S0218348X19500762
Fractal Characterization of Silty Beds/laminae and its Implications for the Prediction of Shale Oil Reservoirs in Qingshankou Formation of Northern Songliao Basin, Northeast China
来源期刊:FractalsDOI:10.1142/S0218348X19400097
ENHANCED OIL FLOW MODEL COUPLING FRACTAL ROUGHNESS AND HETEROGENEOUS WETTABILITY
来源期刊:FractalsDOI:10.1142/S0218348X19500889
Overall PSD and Fractal Characteristics of Tight Oil Reservoirs: a Case Study of Lucaogou Formation in Junggar Basin, China
来源期刊:FractalsDOI:10.1142/S0218348X1940005X
INVESTIGATION OF DYNAMIC TEXTURE AND FLOW CHARACTERISTICS OF FOAM TRANSPORT IN POROUS MEDIA BASED ON FRACTAL THEORY
来源期刊:FractalsDOI:10.1142/S0218348X19400139
HE–ELZAKI METHOD FOR SPATIAL DIFFUSION OF BIOLOGICAL POPULATION
来源期刊:FractalsDOI:10.1142/S0218348X19500695
BOX DIMENSION OF A NONLINEAR FRACTAL INTERPOLATION CURVE
来源期刊:FractalsDOI:10.1142/S0218348X19500233
PROGRESS ON ESTIMATION OF FRACTAL DIMENSIONS OF FRACTIONAL CALCULUS OF CONTINUOUS FUNCTIONS
来源期刊:FractalsDOI:10.1142/S0218348X19500841
METRIC AND DIMENSIONAL PROPERTIES OF THE BADLY APPROXIMABLE SET FOR BETA-TRANSFORMATIONS
来源期刊:FractalsDOI:10.1142/S0218348X19500257
RECURRENT FRACTAL INTERPOLATION SURFACES ON TRIANGULAR DOMAINS
来源期刊:FractalsDOI:10.1142/S0218348X19500853
FRACTIONAL DIFFUSION-LIMITED AGGREGATION: ANISOTROPY ORIGINATING FROM MEMORY
来源期刊:FractalsDOI:10.1142/s0218348x19501378
NUMERICAL STUDY ON MELTING HEAT TRANSFER IN FRACTAL METAL FOAM
来源期刊:FractalsDOI:10.1142/S0218348X19501068
EXPLORING THE VULNERABILITY OF FRACTAL COMPLEX NETWORKS THROUGH CONNECTION PATTERN AND FRACTAL DIMENSION
来源期刊:FractalsDOI:10.1142/S0218348X19501020
FAT AND THIN MORAN SETS FOR DOUBLING MEASURES
来源期刊:FractalsDOI:10.1142/S0218348X1950035X
NUMERICAL STUDY ON THE SOLIDIFICATION PERFORMANCE OF A LATENT HEAT STORAGE UNIT WITH KOCH-FRACTAL FIN
来源期刊:FractalsDOI:10.1142/S0218348X19501081
Characteristic Polynomial of Adjacency or Laplacian Matrix for Weighted Treelike Networks
来源期刊:FractalsDOI:10.1142/S0218348X19500749
Asymptotic Formula of Average Distances on Fractal Networks Modeled by Sierpinski Tetrahedron
来源期刊:FractalsDOI:10.1142/S0218348X19501202
COMPUTATIONAL INTELLIGENCE FOR SHOEPRINT RECOGNITION
来源期刊:FractalsDOI:10.1142/S0218348X19500804
FRACTAL CHARACTERISTICS OF NANOSCALE PORES IN SHALE AND ITS IMPLICATIONS ON METHANE ADSORPTION CAPACITY
来源期刊:FractalsDOI:10.1142/S0218348X19400140
GEODESIC DISTANCE ON LALLEY–GATZOURAS CARPETS
来源期刊:FractalsDOI:10.1142/S0218348X19501238
ORTHOGONAL EXPONENTIAL FUNCTIONS OF SELF-AFFINE MEASURES IN ℝn
来源期刊:FractalsDOI:10.1142/S0218348X19500294
A REVISIT TO α-FRACTAL FUNCTION AND BOX DIMENSION OF ITS GRAPH
来源期刊:FractalsDOI:10.1142/S0218348X19500907
Two-Dimensional Fractal Model for Ultimate Crushing State of Coarse Aggregates
来源期刊:FractalsDOI:10.1142/S0218348X19501093
Doubling properties of self-affine measures supported on Gatzouras-Lalley fractals
来源期刊:FractalsDOI:10.1142/s0218348x19501275
Interim Analysis of Clinical Trials: Simulation Studies of Conditional Power Under Fractional Brownian Motion
来源期刊:FractalsDOI:10.1142/s0218348x19501330
JARNÍK’S THEOREM WITHOUT THE MONOTONICITY ON THE APPROXIMATING FUNCTION
来源期刊:FractalsDOI:10.1142/S0218348X19500440
MAXIMUM PENETRATION DEPTH AND PENETRATION TIME PREDICTING MODEL OF CEMENTING FLUID FLOW THROUGH WELLBORE INTO WEAKLY CONSOLIDATED FORMATION
来源期刊:FractalsDOI:10.1142/s0218348x19501329
p.c.f. SELF-SIMILAR SETS AND H-CONDITION
来源期刊:FractalsDOI:10.1142/S0218348X1950107X
NUMERICAL STUDY ON FLOW BOILING IN A TREE-SHAPED MICROCHANNEL
来源期刊:FractalsDOI:10.1142/S0218348X19501111
Composition of One-Dimensional Continuous Functions and Their Riemann-Liouville Fractional Integral
来源期刊:FractalsDOI:10.1142/S0218348X19500658
Triangular Labyrinth Fractals
来源期刊:FractalsDOI:10.1142/s0218348x19501317
APPROXIMATE SOLUTION TO FRACTIONAL RICCATI DIFFERENTIAL EQUATIONS
来源期刊:FractalsDOI:10.1142/s0218348x19501287
Fractal Analysis of Temperature Time Series from Batch Sugarcane Crystallization
来源期刊:FractalsDOI:10.1142/S0218348X1950004X
FRACTAL DIMENSIONS OF WEYL–MARCHAUD FRACTIONAL DERIVATIVE OF CERTAIN ONE-DIMENSIONAL FUNCTIONS
来源期刊:FractalsDOI:10.1142/S0218348X19501147

质量指标占比

研究类文章占比 OA被引用占比 撤稿占比 出版后修正文章占比
99.22%40.65%--

相关指数

影响因子
影响因子
年发文量
自引率
Cite Score

预警情况

查看说明
时间 预警情况
2025年03月发布的2025版不在预警名单中
2024年02月发布的2024版不在预警名单中
2023年01月发布的2023版不在预警名单中
2021年12月发布的2021版不在预警名单中
2020年12月发布的2020版不在预警名单中
*来源:中科院《 国际期刊预警名单》

JCR分区

WOS分区等级:Q1区
版本 按学科 分区
WOS期刊SCI分区
WOS期刊SCI分区
WOS期刊SCI分区是指SCI官方(Web of Science)为每个学科内的期刊按照IF数值排 序,将期刊按照四等分的方法划分的Q1-Q4等级,Q1代表质量最高,即常说的1区期刊。
(2024-2025年最新版)
MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Q1

中科院分区

查看说明
版本 大类学科 小类学科 Top期刊 综述期刊
2025年3月最新升级版
数学3区
MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 数学跨学科应用
3区
2023年12月升级版
数学3区
MULTIDISCIPLINARY SCIENCES 综合性期刊
2区
MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 数学跨学科应用
3区
2022年12月旧的升级版
数学2区
MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 数学跨学科应用
2区