The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory.Both ECP and EJP are official journals of the Institute of Mathematical Statisticsand the Bernoulli society.
概率电子期刊发表概率论的全尺寸研究文章。《概率电子通讯》(ECP)是EJP的姊妹期刊,主要发表概率论方面的简短笔记和研究公告,ECP和EJP都是数理统计研究所和伯努利学会的官方期刊。
年发文量 200
国人发稿量 19.28
国人发文占比 0.1%
自引率 -
平均录取率 0
数据非官方,来自网友分享经验
平均审稿周期 偏慢,4-8周
数据非官方,来自网友分享经验
版面费 -
偏重研究方向 数学-统计学与概率论
期刊官网 http://ejp.ejpecp.org/
投稿链接 https://projecteuclid.org/euclid.ejp
Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness
来源期刊:Electronic Journal of Probability DOI:10.1214/19-EJP379
Edge universality of separable covariance matrices
来源期刊:Electronic Journal of Probability DOI:10.1214/19-EJP381
A random walk with catastrophes.
来源期刊:Electronic journal of probability DOI:10.1214/19-EJP282
A revisited proof of the Seneta-Heyde norming for branching random walks under optimal assumptions
来源期刊:Electronic Journal of Probability DOI:10.1214/19-EJP350
Stopping with expectation constraints: 3 points suffice
来源期刊:Electronic Journal of Probability DOI:10.1214/19-EJP309
Scaling limit of ballistic self-avoiding walk interacting with spatial random permutations
来源期刊:Electronic Journal of Probability DOI:10.1214/19-EJP328
First passage time of the frog model has a sublinear variance
来源期刊:Electronic Journal of Probability DOI:10.1214/19-EJP334
Random walks in a moderately sparse random environment.
来源期刊:Electronic journal of probability DOI:10.1214/19-EJP330
Disagreement percolation for the hard-sphere model
来源期刊:Electronic Journal of Probability DOI:10.1214/19-EJP320
Characteristic functionals of Dirichlet measures
来源期刊:Electronic Journal of Probability DOI:10.1214/19-EJP371
Second Errata to “Processes on Unimodular Random Networks”
来源期刊:Electronic Journal of Probability DOI:10.1214/19-EJP291
Heavy subtrees of Galton-Watson trees with an application to Apollonian networks
来源期刊:Electronic Journal of Probability DOI:10.1214/19-EJP263