DATA MINING AND KNOWLEDGE DISCOVERY

DATA MINING AND KNOWLEDGE DISCOVERY

DATA MIN KNOWL DISC
影响因子:4.3
是否综述期刊:
是否预警:不在预警名单内
是否OA:
出版国家/地区:NETHERLANDS
出版社:Springer US
发刊时间:1997
发刊频率:Bimonthly
收录数据库:SCIE/Scopus收录
ISSN:1384-5810

期刊介绍

Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.
数据收集、存储和分发的进步已经产生了对计算工具和技术的需求,以帮助数据分析。数据库中的数据挖掘和知识发现(Data Mining and Knowledge Discovery in Databases,KDD)是一个快速发展的研究和应用领域,它建立在统计学、数据库、模式识别和学习、数据可视化、不确定性建模、数据仓库和OLAP、优化和高性能计算等多个领域的技术和理论基础之上。
年发文量 74
国人发稿量 10.69
国人发文占比 0.14%
自引率 -
平均录取率0
平均审稿周期 平均6.0个月
版面费 US$2890
偏重研究方向 工程技术-计算机:人工智能
期刊官网 https://www.springer.com/10618
投稿链接 https://www.editorialmanager.com/dami

期刊高被引文献

Deep learning for time series classification: a review
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00619-1
catch22: CAnonical Time-series CHaracteristics
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00647-x
A probabilistic classifier ensemble weighting scheme based on cross-validated accuracy estimates
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00638-y
On normalization and algorithm selection for unsupervised outlier detection
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00661-z
Deeply supervised model for click-through rate prediction in sponsored search
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00625-3
A unifying view of explicit and implicit feature maps of graph kernels
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00652-0
Attributed network embedding via subspace discovery
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00650-2
FURL: Fixed-memory and uncertainty reducing local triangle counting for multigraph streams
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00630-6
Subjectively interesting connecting trees and forests
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00627-1
HHMF: hidden hierarchical matrix factorization for recommender systems
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00632-4
A drift detection method based on dynamic classifier selection
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00656-w
Efficient mixture model for clustering of sparse high dimensional binary data
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00635-1
The decomposed normalized maximum likelihood code-length criterion for selecting hierarchical latent variable models
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00624-4
EACD: evolutionary adaptation to concept drifts in data streams
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00614-6
A new class of metrics for learning on real-valued and structured data
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00622-6
Mining relaxed functional dependencies from data
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00667-7
Wrangling messy CSV files by detecting row and type patterns
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00646-y
Robust active attacks on social graphs
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00631-5
A unified view of density-based methods for semi-supervised clustering and classification
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00651-1
Delayed labelling evaluation for data streams
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00654-y
Multi-location visibility query processing using portion-based transactional modeling and pattern mining
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00641-3
More for less: adaptive labeling payments in online labor markets
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00637-z
Matching code and law: achieving algorithmic fairness with optimal transport
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00658-8
Unsupervised dimensionality reduction versus supervised regularization for classification from sparse data
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00616-4
FastEE: Fast Ensembles of Elastic Distances for time series classification
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00663-x
Topical network embedding
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00659-7
An effective and versatile distance measure for spatiotemporal trajectories
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00615-5
Efficiently mining cohesion-based patterns and rules in event sequences
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00628-0
Identifying exceptional (dis)agreement between groups
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00665-9
A comparative study of data-dependent approaches without learning in measuring similarities of data objects
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00660-0
Grafting for combinatorial binary model using frequent itemset mining
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00657-9
SIAS-miner: mining subjectively interesting attributed subgraphs
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00664-w
Extending inverse frequent itemsets mining to generate realistic datasets: complexity, accuracy and emerging applications
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00643-1
Temporal density extrapolation using a dynamic basis approach
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00636-0
Deep multi-task learning for individuals origin–destination matrices estimation from census data
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00662-y
Clustering for heterogeneous information networks with extended star-structure
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00626-2
Contextual bandits with hidden contexts: a focused data capture from social media streams
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00648-w
Dynamics reconstruction and classification via Koopman features
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00639-x
A semi-supervised model for knowledge graph embedding
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00653-z
Counts-of-counts similarity for prediction and search in relational data
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00621-7
Guest Editorial
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00623-5
Introduction to the special issue for the ECML PKDD 2019 journal track
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00642-2
Algorithmic cache of sorted tables for feature selection
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00620-8
Mining skypatterns in fuzzy tensors
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00640-4
Setting decision thresholds when operating conditions are uncertain
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00613-7
Correction to: Domain agnostic online semantic segmentation for multi-dimensional time series
来源期刊:Data Mining and Knowledge DiscoveryDOI:10.1007/s10618-019-00618-2

质量指标占比

研究类文章占比 OA被引用占比 撤稿占比 出版后修正文章占比
98.65%50.78%-1.64%

相关指数

影响因子
影响因子
年发文量
自引率
Cite Score

预警情况

查看说明
时间 预警情况
2025年03月发布的2025版不在预警名单中
2024年02月发布的2024版不在预警名单中
2023年01月发布的2023版不在预警名单中
2021年12月发布的2021版不在预警名单中
2020年12月发布的2020版不在预警名单中
*来源:中科院《 国际期刊预警名单》

JCR分区

WOS分区等级:Q2区
版本 按学科 分区
WOS期刊SCI分区
WOS期刊SCI分区
WOS期刊SCI分区是指SCI官方(Web of Science)为每个学科内的期刊按照IF数值排 序,将期刊按照四等分的方法划分的Q1-Q4等级,Q1代表质量最高,即常说的1区期刊。
(2024-2025年最新版)
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Q2

中科院分区

查看说明
版本 大类学科 小类学科 Top期刊 综述期刊
2025年3月最新升级版
计算机科学3区
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 计算机:人工智能
3区
COMPUTER SCIENCE, INFORMATION SYSTEMS 计算机:信息系统
4区
2023年12月升级版
计算机科学3区
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 计算机:人工智能
3区
COMPUTER SCIENCE, INFORMATION SYSTEMS 计算机:信息系统
3区
2022年12月旧的升级版
计算机科学3区
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 计算机:人工智能
3区
COMPUTER SCIENCE, INFORMATION SYSTEMS 计算机:信息系统
3区