STATISTICS AND COMPUTING

STATISTICS AND COMPUTING

STAT COMPUT
影响因子:1.6
是否综述期刊:
是否预警:不在预警名单内
是否OA:
出版国家/地区:NETHERLANDS
出版社:Springer US
发刊时间:1991
发刊频率:Quarterly
收录数据库:SCIE/Scopus收录
ISSN:0960-3174

期刊介绍

Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
《统计与计算》是一份双月刊,发表论文涵盖统计与计算科学之间的一系列接口。特别是,它讨论了统计概念在计算科学中的使用,例如在机器学习、计算机视觉和数据分析中的使用,以及在数据建模、预测和分析中的使用。所涵盖的具体主题包括:用于评估分析上难以处理的问题的技术,诸如自举重采样、马尔可夫链蒙特卡罗、顺序蒙特卡罗、近似贝叶斯计算、搜索和优化方法、随机模拟和蒙特卡罗、图形学、计算机环境、软件错误的统计方法、信息检索、机器学习、数据库的统计和数据库技术、巨大数据集和大数据分析、计算机代数图形模型、图像处理、层析成像、反问题和不确定性量化。此外,该杂志还包含原创研究报告、权威评论论文、讨论论文,以及特定主题的偶尔特刊或相关会议的记录。《统计与计算》还出版书评和软件评论部分。
年发文量 205
国人发稿量 31.98
国人发文占比 0.16%
自引率 -
平均录取率0
平均审稿周期 较慢,6-12周
版面费 US$2780
偏重研究方向 数学-计算机:理论方法
期刊官网 https://www.springer.com/11222
投稿链接 https://www.editorialmanager.com/stco

期刊高被引文献

Control variates for stochastic gradient MCMC
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9826-2
Deep Gaussian mixture models
来源期刊:Statistics and ComputingDOI:10.1007/s11222-017-9793-z
Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9844-0
A probabilistic model for the numerical solution of initial value problems
来源期刊:Statistics and ComputingDOI:10.1007/s11222-017-9798-7
Penalized estimation of directed acyclic graphs from discrete data
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9801-y
Decision-making under uncertainty: using MLMC for efficient estimation of EVPPI
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9835-1
Bayesian nonparametric spectral density estimation using B-spline priors
来源期刊:Statistics and ComputingDOI:10.1007/s11222-017-9796-9
Robust finite mixture modeling of multivariate unrestricted skew-normal generalized hyperbolic distributions
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9815-5
Resample-smoothing of Voronoi intensity estimators
来源期刊:Statistics and ComputingDOI:10.1007/S11222-018-09850-0
Informed sub-sampling MCMC: approximate Bayesian inference for large datasets
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9817-3
Langevin diffusions on the torus: estimation and applications
来源期刊:Statistics and ComputingDOI:10.1007/s11222-017-9790-2
Bayesian nonparametric clustering for large data sets
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9803-9
Selection of sparse vine copulas in high dimensions with the Lasso
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9807-5
Model-based clustering with sparse covariance matrices
来源期刊:Statistics and ComputingDOI:10.1007/S11222-018-9838-Y
Interpretable sparse SIR for functional data
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9806-6
Quantifying uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov models
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9828-0
Double-Parallel Monte Carlo for Bayesian analysis of big data
来源期刊:Statistics and ComputingDOI:10.1007/S11222-017-9791-1
Structured priors for sparse probability vectors with application to model selection in Markov chains
来源期刊:Statistics and ComputingDOI:10.1007/S11222-019-09856-2
Learning causal structure from mixed data with missing values using Gaussian copula models
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9810-x
Efficient construction of Bayes optimal designs for stochastic process models
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9833-3
Rejection sampling for tempered Lévy processes
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9822-6
Rank aggregation using latent-scale distance-based models
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9811-9
Prior specification for binary Markov mesh models
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9813-7
Laplace approximation and natural gradient for Gaussian process regression with heteroscedastic student-t model
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9836-0
Antithetic and Monte Carlo kernel estimators for partial rankings
来源期刊:Statistics and ComputingDOI:10.1007/s11222-019-09859-z
Efficient sampling of conditioned Markov jump processes
来源期刊:Statistics and ComputingDOI:10.1007/S11222-019-09861-5
On an algorithm for solving Fredholm integrals of the first kind
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9829-z
Importance sampling for partially observed temporal epidemic models
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9827-1
Multilevel particle filters for Lévy-driven stochastic differential equations
来源期刊:Statistics and ComputingDOI:10.1007/S11222-018-9837-Z
An approximate fractional Gaussian noise model with $$\\mathcal {O}(n)$$O(n) computational cost
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9843-1
A constrained regression model for an ordinal response with ordinal predictors
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9842-2
Consistency of the maximum likelihood estimator in seasonal hidden Markov models
来源期刊:Statistics and ComputingDOI:10.1007/s11222-019-09854-4
The dynamic stochastic topic block model for dynamic networks with textual edges
来源期刊:Statistics and ComputingDOI:10.1007/S11222-018-9832-4
Exact MCMC with differentially private moves
来源期刊:Statistics and ComputingDOI:10.1007/S11222-018-9847-X
Generalized additive models with flexible response functions
来源期刊:Statistics and ComputingDOI:10.1007/s11222-017-9799-6
Inference for ETAS models with non-Poissonian mainshock arrival times
来源期刊:Statistics and ComputingDOI:10.1007/S11222-018-9845-Z
Randomized algorithms of maximum likelihood estimation with spatial autoregressive models for large-scale networks
来源期刊:Statistics and ComputingDOI:10.1007/S11222-019-09862-4
Anomaly and Novelty detection for robust semi-supervised learning
来源期刊:Statistics and ComputingDOI:10.1007/s11222-020-09959-1
Improving the efficiency and robustness of nested sampling using posterior repartitioning
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9841-3
Latent mixture modeling for clustered data
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9821-7
Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9812-8
Orthant probabilities of elliptical distributions from orthogonal projections to subspaces
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9808-4
Information preserving regression-based tools for statistical disclosure control
来源期刊:Statistics and ComputingDOI:10.1007/S11222-018-9848-9
Best linear estimation via minimization of relative mean squared error
来源期刊:Statistics and ComputingDOI:10.1007/s11222-017-9792-0
Computationally efficient Bayesian estimation of high-dimensional Archimedean copulas with discrete and mixed margins
来源期刊:Statistics and ComputingDOI:10.1007/S11222-018-9846-Y
Long memory estimation for complex-valued time series
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9820-8
Selecting the tuning parameter in penalized Gaussian graphical models
来源期刊:Statistics and ComputingDOI:10.1007/s11222-018-9823-5
Asymptotic normality of extensible grid sampling
来源期刊:Statistics and ComputingDOI:10.1007/s11222-017-9794-y
Correction to: Multilevel particle filters for Lévy-driven stochastic differential equations
来源期刊:Statistics and ComputingDOI:10.1007/S11222-018-9839-X
Convergence analysis of herded-Gibbs-type sampling algorithms: effects of weight sharing
来源期刊:Statistics and ComputingDOI:10.1007/S11222-019-09852-6

质量指标占比

研究类文章占比 OA被引用占比 撤稿占比 出版后修正文章占比
100.00%42.86%--

相关指数

影响因子
影响因子
年发文量
自引率
Cite Score

预警情况

查看说明
时间 预警情况
2025年03月发布的2025版不在预警名单中
2024年02月发布的2024版不在预警名单中
2023年01月发布的2023版不在预警名单中
2021年12月发布的2021版不在预警名单中
2020年12月发布的2020版不在预警名单中
*来源:中科院《 国际期刊预警名单》

JCR分区

WOS分区等级:Q3区
版本 按学科 分区
WOS期刊SCI分区
WOS期刊SCI分区
WOS期刊SCI分区是指SCI官方(Web of Science)为每个学科内的期刊按照IF数值排 序,将期刊按照四等分的方法划分的Q1-Q4等级,Q1代表质量最高,即常说的1区期刊。
(2024-2025年最新版)
COMPUTER SCIENCE, THEORY & METHODS
Q3

中科院分区

查看说明
版本 大类学科 小类学科 Top期刊 综述期刊
2025年3月最新升级版
数学2区
STATISTICS & PROBABILITY 统计学与概率论
2区
COMPUTER SCIENCE, THEORY & METHODS 计算机:理论方法
3区
2023年12月升级版
数学2区
COMPUTER SCIENCE, THEORY & METHODS 计算机:理论方法
2区
STATISTICS & PROBABILITY 统计学与概率论
2区
2022年12月旧的升级版
数学2区
COMPUTER SCIENCE, THEORY & METHODS 计算机:理论方法
2区
STATISTICS & PROBABILITY 统计学与概率论
2区